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This paper begins by reviewing Bethe’s (1942) work on the subject. He considered 
the propagation of a normal shock wave in a medium with an arbitrary equation of 
state. Difficulties arise if one attempts to extend his theory to systems containing 
plane oblique shocks or the reflection or refraction of such shocks. The object of the 
present paper is to resolve these difficulties. General conditions for the local 
thermodynamic equilibrium and thermodynamic stability, of a non-equilibrium 
system in steady-state, adiabatic, flow are summarized by the principle of maximum 
entropy production, which gives 

AS 2 0 ;  d(As) = 0 ;  d2(As) < 0, 

for h, constant, where s is the specific entropy and h, is the specific total enthalpy ; it 
is deduced from the second law. Conversely the consequences of As  < 0, d(As) + 0, 
d2(As) = 0, are discussed and may lead to either an impossibility or to some form of 
instability such as unsteadiness, or a change in the structure of the system (a 
catastrophe). 

1. Introduction 
Many authors have studied the stability of shock waves in adiabatic systems : 

D’l’akov (1956), Kontorovich (1957), Erpenbeck (1962), Morduchow & Paulley 
(1971), Swan & Fowles (1975), Fowles (1976, 1981), Griffith, Sandeman & Houwing 
(1975), Salas & Morgan (1983), Houwing, Fowles & Sandeman (1983), Fowles & 
Houwing (1984). Typically these theories discuss the interaction of linear acoustic 
waves with a shock and determine whether the perturbation will grow with time. The 
disturbance can be produced by a boundary, such as a perturbing downstream 
piston. These may be regarded as problems in mechanical stability because they deal 
with the virtual exchange of work with the surroundings but not usually with the 
exchange of heat. Several types of stability have been studied, for example the effect 
of transverse disturbances on the shock, or the effects of shock corrugation where a 
slightly diverging part of the shock might travel slightly faster than a slightly 
converging part. 

Here, we shall follow the approach taken by Bethe (1942) which concentrates on 
the thermodynamic theory of the problem. We shall be concerned with the adiabatic 
systems in steady-state flow. We shall assume that the compressible medium is in a 
single phase, but otherwise as far as possible, there will be no restriction on its 
equation of state. There are difficulties with the Bethe theory, especially if one tries 
to extend it to an oblique shock or to multiple-shock systems. The object of this 
paper is to try and resolve some of these difficulties. It is found that the principle of 
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maximum entropy production emerges naturally from the analysis and is of use in 
resolving an ambiguity that arises during the transition between regular, and Mach 
reflection of a plane oblique shock. 

2. Bethe’s work 
2.1.  Thermodynamic irreversibility 

I n  a remarkable paper, Bethe studied the propagation of a normal shock wave in a 
medium with an arbitrary equation of state. The medium was in local thermodynamic 
equilibrium (LTE) upstream and downstream of the shock, and in each of these 
regions the properties of the medium were independent of position and time, (x, t )  
say, He assumed that the shock would be thermodynamically stable if the specific 
entropy of the medium increased as it passed through the shock. Formerly his 
criterion was (my wording) : 

medium increases as it passes through the shock. 

If v is the specific volume of the medium and if higher terms of Av are neglected then 
by expanding the Hugoniot equation he found that for weak shocks, 

( A )  A normal shock will be thermodynamically stable if the speci$c entropy of the 

where P is the pressure, T the temperature, and the subscripts 1 , 2  refer to the state 
upstream and downstream of the shock respectively. It followed that a necessary 
condition for a weak compression shock to be stable is that the equation of state of 
the medium satisfied 

for both AS s2-s1 > 0, (3) 

AV 3 v2-v1 < 0. (4) 

Conversely if the medium satisfied ( 2 )  then he proved that a sufficient condition for 
a compression shock of arbitrary strength to cause an increase in the entropy of the 
medium was that 

where e was the internal energy. The proof again depended on the use of the 
Hugoniot equation. He concluded that (5) ‘is valid for all substances in practically 
all states’. 

Strictly speaking As > 0 is not a condition for stability but one for irreversibility. 
It is of course the Clausius inequality deduced from the second law for an adiabatic 
system. So it is a necessary condition for the existence of the normal shock system 
(either compressive or expansive) and not for its stability; for it is certainly 
reasonable that an irreversible adiabatic system cannot exist unless As > 0. On the 
other hand unstable systems can exist in the steady state with As > 0, for example 
a stoichiometric mixture of hydrogen and oxygen flowing through a normal shock 
that is so weak that it does not cause detonation - a metastable system. 

We can partly invert the Bethe argument that requires (5), by assuming that an 
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adiabatic compressive normal-shock system in the steady state must obey the 
Clausius inequality, so that we have 

AS s2-s1 > 0, AV v2-v1 < 0. 

Now if the medium obeys (2), and the shock obeys the Hugoniot equation, then (5) 
follows without difficulty as a sufficient condition for the existence of a compressive 
shock of arbitrary strength. Thus we conclude from the fundamental Clausius 
inequality and the Hugoniot equation that a sufficient condition for the existence of 
a steady-state, compressive, adiabatic, normal-shock system is that the equation of 
state of the medium obeys (2) and (5). 

If expansion shocks Av > 0 are to exist then by (1) the sign of condition (2) must 
be reversed, and apparently this can happen for some substances near their critical 
point. Indeed Borisov et al. (1983) have detected these shocks in freon 13. 

2.2. Stability against splitting 
Bethe assumed that a shock wave could be unstable if it were to split into partial 
waves (a structural change or catastrophe) but he concluded that a sufficient 
condition to prevent this happening was for the medium to obey a third condition, 

which he obtained by differentiating the Hugoniot equation. He proved that when 
(6) was fulfilled, the energy increased monotonically with the entropy for compressed 
states. 

Further study lead him to conclude that ‘none of the three conditions was required 
by any general or statistical argument because for each one of the three conditions 
there exists some substances for which the condition is violated a t  certain 
temperatures and densities ’. 

Bethe also proved the well-known result that a normal shock propagates a t  
supersonic speed relative to the medium ahead if it and a t  subsonic speed relative to 
that behind it. From this he deduced the ‘subsonic-supersonic’ criterion for shock 
stability, thus : 

( B )  N o  shocks can split into ‘partial waves’ travelling in the same direction whether 
the partial waves be shock waves or injinitesimal ones. 

This criterion has been mentioned by leading texts, Courant & Friedrichs (1948), 
Landau & Lifshitz (19591, but i t  has not been generally accepted; in fact Fowles & 
Houwing (1984) say that it is neither necessary nor sufficient for stability. According 
to ( B )  it is still permissible for an unstable shock to split into waves moving in 
opposite directions, but Bethe claims to prove that : 

(C)  A shock can never split in a material whose equation of state fulJills the three 
conditions (Z), ( 5 )  and (6). 

In  addition to the above we shall use Bethe’s ‘ central theorem ’ for a normal shock 
propagating in a single-phase material that satisfies (2), (5) and (6), namely: 

(D) If the state in front of the shock ( v l , s l )  is  given, there i s  one and only one 
solution of the shock equations for any given value of the entropy s2 behind the shock 

The Bethe theory has been widely accepted as correct, except for the shock- 

(sl < s2 < 00). 
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splitting criteria (B)  and (C). It is natural to  try and extend the theory to oblique 
shocks and to their reflections, but dificulties soon appear. For suppose that a wedge 
of apex angle S is placed in a supersonic stream of Mach number M ,  then if S is less 
than the shock detachment angle S < Sdet, the Rankine-Hugoniot (RH) theory, 
Ames (1953) provides two oblique-shock solutions. One solution has supersonic flow 
downstream of the shock and the other subsonic flow, yet it is the super- 
sonic-supersonic solution that appears and is stable even when the medium satisfies 
( 2 ) ,  ( 5 )  and (6). Thus the ‘subsonic-supersonic’ criterion which is the basis for ( B )  
and (C) is apparently violated. Similarly the von Neumann (1943) theory for the 
regular reflection of oblique shocks also provides two solutions, and again with 
supersonic and subsonic flow downstream, and once more it is the supersonic solution 
that appears during an experiment. We shall study these difficulties in an attempt 
to overcome them. 

3. Thermodynamic stability 
3.1. Maximum entropy 

Consider a control mass of a pure substance in a single phase in stable thermodynamic 
equilibrium contained in a cylinder closed by two pistons, figure l ( a ) .  The entire 
system has adiabatic walls. Jnitially the substance and the pistons move with the 
same constant velocity Upl with respect to  a fixed laboratory frame of reference ; so 
the control mass is compatible with its boundaries. The thermodynamic and 
dynamic state of the system is given the set of parameters a,, 

and because the system is in stable equilibrium then by the second law its entropy 
is a maximum. However this is subject to the constraint that its internal energy e, 
is constant (Guggenheim 1959; Callen 1958) : thus 

ds, = 0, (8) 

d2s, < 0, (9) 
with e, constant. 

Now suppose that a t  some time t = 0 the velocity of the right-hand piston is 
impulsively reduced below the velocity of the left-hand piston, Upz < Upl. Instantly 
a normal shock will appear on the face of the right-hand piston. It will be assumed 
that the set of system parameters, which is now a12, 

is such that the shock is stationary in the laboratory frame; the RH equations (Ames 
1953), show us how to adjust, say Up2: to ensure this. A short time later some of 
the substance will have passed through the shock and arrived a t  a new stable state 
(e2 ,  w2) with velocity Up%, figure 1 (b ) .  The entropy sp > sl. At a still later time the left- 
hand piston will reach the shock and it will be assumed that its velocity is then 
impulsively reduced to Up2, figure 1 ( c ) .  The state of the system is now determined by 
“2 2 

So we see that each stablc homogeneous region moving with a constant velocity 
Upl or Ups has a maximum entropy s1 or s2 subject to the constraints that  the internal 
energy e, or e2  of each region is constant. For given aI2 the RH equations show that 

( 1 1 )  a2 = (e2 ,  v 2 ,  up,>. 
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FIGURE 1 .  The steady state normal shock system. S, shock wave, Up,, Up*, velocities of left- and 
right-hand pistons; el,  e2 internal energy; vl, v 2  specific volumes. 

the production of entropy per unit m s s  of the medium As = s2 - s1 is determined by 
Up, - Up* and furthermore Bethe’s theorem (D) shows that As is unique. It will be 
noticed that when both regions are present at the same time then it is impossible to 
choose a coordinate system that is simultaneously a t  rest with respect to every part 
of the system, so the system is not in thermodynamic equilibrium, it is at most in 
piecewise local thermodynamic equilibrium. 

3.2. Physical consequences of the maximum-entropy condition 
For coordinates which are a t  rest with respect to any medium there is Gibb’s 
equation, 

The fundamental thermodynamic equation for any system is obtained by integrating 

(13) 
it,  

s = s(e,  v). 

If this equation can be expanded in a Taylor series about the equilibrium point, then 
the first-order terms must vanish by (8) if s is to have a stationary value, 

de = Tds-Pdv. (12) 

But, from (12), 

as as 
ae av 

ds = 0 = -de+-dv. 

and using standard technique, e.g. Guggenheim (1959), Callen (1985), i t  can be shown 
that this gives the condition that (P, T )  are constant throughout a homogeneous 
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region if the region is to be in equilibrium. In steady-state flow, it is also required that 
the particle velocity u of a region should everywhere be equal to  the piston velocity 
U ,  of the boundary, so (P, T ,  u) are everywhere constant for a region. We will say 
that it is then in LTE with, ds = 0. 

If the equilibrium is to be stable, then d2s < 0 and the second-order terms of the 

It is seen that the coefficients in both terms must be independently negative, which 
gives successively 

and so (E) < o .  
e 

Once more using (12), one obtains from (17) 

which means that the temperature of a stable system will increase if it is heated at  
constant volume. The next condition is a little more difficult, but i t  may be confirmed 
that 

and because T > 0. (E) < o ,  
T 

so if a stable system is compressed isothermally its volume will decrease. Here k' is 
the Helmholtz free energy and FIT the corresponding (Legendre transformed) 
Massieu function (Callen 1985). The inequalities (17) and (18) also imply that 

which is a well-known necessary condition for a maximum. The third condition (19) 
gives, 

aPIT (E)e = (%-)e O, 

which is more general than the Bethe condition (6), but here it is a consequence of 
(20) and (21) taken together. It reduces to (6) for a polytropic substance, e = e(T) .  



Thermodynawuic stability of ‘steady-state adiabatic systems 515 

We can extend (20) and (21) by means of the formulas (Landau & Lifshitz 
1958) 

so that (20) and (21) become c, > c, > 0, 

All known single-phase substances in equilibrium, and above 0 OK, obey (20) and (21), 
and therefore also ( 2 2 ) ,  (25) and (26). Bethe did not specify (20) as a condition for the 
stability of the normal-shock system, yet he used it repeatedly, calling C, ‘ a  positive 
definite quantity ’. We conclude that (20) and (21) are the fundamental necessary 
conditions required for the thermodynamic stability of any region in LTE. Each 
region must obey them regardless of whether shocks are present or not. Bethe’s 
condition, (S), is a consequence of these conditions, whereas his conditions (2) and (5 )  
are only required for the special case for the existence of compressive shocks. 

4. The principle of maximum entropy production: the steady-state normal 
shock system 

Suppose there are two normal shock systems operating simultaneously (figure 
2a ,  b ) .  Both are in the steady state and both have a shock that is stationary with 
respect to the same laboratory frame. As before, it will be assumed that the medium 
is in a single phase but otherwise has an arbitrary equation of state. The first system 
(figure 2a) has the same parameters cI2 as before and because the shock is stationary 
its Mach number M ,  can be found from 

where a, is the speed of sound, which can in turn be found from 

and from the equation of state, which is assumed to be known. I n  the second system 
(figure 2 b )  the parameters (el, vl) are still the same but the velocity of the left-hand 
piston is infinitesimally larger, so that its shock Mach number M,1 is given by 

To keep the shock stationary i t  is necessary to adjust U p I  slightly. For a compression 
shock, e2 will be increased to e,+de,, while v2 will be changed to  v,+dv,, where 
dv, < 0 compared with the first system. The initial entropy s1 is the same for both 
systems but there is a difference ds, in the final entropy of the two systems which can 
be found from (12). 

(30) 
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where we have found that for compression shocks de, > 0, and dv, < 0. Now suppose 
that we wait until all the substance has passed through the shock in the second 
system, and that we then expand the substance so that v,-dv, becomes v,. This can 
be done by a reversible exchange of work with surroundings, moving both pistons 
outwards by the same amount in such a way that e,+de, remains constant. 
Assuming that the substance obeys (20) and (21) then an infinitesimal quantity of 
heat per unit mass will have to be added to the system to keep e2 + de, constant. The 
exchange of work has no effect on s,+ds, but the exchange of heat does, and the 
amount can be found from (30). 

(31) 
p2 ds - -dV,; 

- T, 

but we are expanding the substance in this process so that dv, > 0 whereas dv, < 0 
in (30). Then adding (30), (31), we get 
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where I, II refer respectively to equations (30) and (31). Equation (32) is the total 
change in s2 as a result of the substance passing through the shock with v2 held 
constant. We have considered the processes taking place consecutively, but we can 
also imagine them occurring simultaneously and in the same system. Then, from 
(32). 

(33) 

and because T, may always be considered positive, we have proved that the entropy 
increases monotonically with the internal energy when the medium obeys (20) and 
(21). Bethe proved this along the shock Hugoniot with the help of (6). However our 
proof uses only the fundamental equation (12) so the conclusion is generally valid for 
any steady-state system that obeys (20) and (21). Differentiation of (33) leads again 
to (20), as it should. In  a similar way we can keep v, - dv, constant while e ,  + de, is 
reduced to e2 ; this can be done by exchanging heat reversibly between the medium 
and the surroundings at  constant volume (v2 - dv,), then (30) leads without difficulty 
t,n 

Thus we have proved generally that the entropy increases monotonically with the 
volume for any steady-state system that obeys (20) and (21). It was shown by Bethe 
that along the shock Hugoniot as/& may not be positive definite but then e ,  is not 
constant. Indeed he found that the curve could have volume minima so that 
&/as = 0. However we have proved that this cannot happen when e is constant. 

In all of these processes s1 is held constant, but for a stable system we have, from 

and d2(As) d2(s,-S1) = d's, < 0. (36) 

So we see that in such a system, not only are s1 and s, maximum but so also i s  the 
entropy production per unit mass As. Furthermore, from the energy equation for an 
adiabatic system the total enthalpy h, is constant, 

h, = h,+gu: = h,+&i, (37) 

where ul, u2 are the velocities of the medium ; they must equal the corresponding 
piston velocities Upl, Up2 if the system is to be compatible with its boundaries. Thus 
we have both the Clausius inequality for adiabatic irreversibility (or extending it to 
include reversibility), 

As 2 0, (38) 

and the maximum-entropy-production condition for stability, 

d(As) = 0, (39) 

d2(As) < 0, (40) 

all subject to the constraints that  the total enthalpy of the system is constant and 
that the system is compatible with its boundaries. Since we are only interested in 
entropy differences we can take s1 as the reference point for measuring s,, even if 
s1 is itself changing, that is, we can put s1 = 0. Thus, As is a maximum when s2 is a 
maximum, so (39) and (40) are consequences of the second law, and so of course is 
(30). Thus, by combining (38)-(40) we get the general principle of maximum entropy 
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production as a necessary condition for the existence and stability of steady-state, 
non-equilibrium, adiabatic systems : 

( E )  The necessary conditions for the thermodynamic stability of an  adiabatic system 
consisting of a steady-state, non-equilibrium $ow of a medium with its upstream and 
downstream regions in L T E  and connected by a process that produces entropy in the 
medium as it passes from one state to the other are that the entropy production is non- 
negative and a maximum, but subject to the constraints that the total enthalpy of the flow 
is constant and that the system i s  compatible with its boundary conditions. 

The essence of the principle is contained in (38)--(40) ; it includes the existence 
conditions for irreversibility and reversibility (38). It also includes those for LTE, 
which lead to the constancy of the parameters (P,  T, u )  and finally those for stability, 
which require C, > 0, and (aP/av), < 0. The principle is not concerned with the time 
rate of entropy production ds/dt, but only with the change of entropy per unit mass 
As. Accordingly it is not necessarily incompatible with the principle of minimum 
entropy production, which deals with time rate (Glansdorff & Prigogine 1971). We 
shall now consider the physical consequences that follow from the violation of 
(El .  

5. Violations of the conditions d(As) = 0 or d2(As) < 0 
5.1. The unsteady normal shock system, d(As) + 0 

Refer again to the steady-state normal shock system and imagine that there is a 
small control volume v, just downstream of the shock and at  rest in the laboratory 
frame (figure 2c) .  The right-hand piston is assumed to be remote, but suppose that 
its velocity Up2 receives a perturbation dUP2 which increases continuously to an 
infinitesimal maximum and then decreases continuously to zero again. Then, so long 
as dUp2 > 0, an infinitesimal band of expansion waves will be propagated upstream 
towards the shock. Later these will be followed by a band of compressions, generated 
when dUP2 < 0. The arrival of the expansions weakens the shock and causes it to 
move slowly downstream and pass through the control volume. The system is now 
unsteady. The passage of the shock will cause a substantial decrease in entropy s2 to 
s1 inside the control volume. Therefore ds, = d(As) + 0 and the condition for 
equilibrium has been locally violated. This is confirmed by the fact that there are also 
substantial changes to (P ,T ,u )  inside the control volume. Suppose now that the 
compressions arrive soon after the shock has passed through it. It is assumed that 
any secondary waves arising from interaction with the shock are dissipated by the 
medium or suppressed by the piston. The result is a net displacement in the position 
of the shock (figure 2 d ) .  For the control volume we now have that ds, = 0, so it is in 
a new equilibrium state, which is also stable if the material satisfies (20)  and (21) .  By 
definition, it will be said that a steady-state system becomes unstable if it becomes 
unsteady, so the normal shock system becomes unstable if the condition for 
equilibrium ds = 0 is violated in some part of it. 

5.2. Instabilities in velocity projiles, d2(As )  = 0 

It is known from the Rayleigh theory and its subsequent developments (Rosenhead 
1963) that a necessary condition for the instability of an inviscid, incompressible, 
constant-temperature, free shear boundary layer is that there should be an inflexion 
point in the velocity profile, figure 3. For these flows d(  1/T) = 0 = dv and inequality 
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(4 (b) (4 
FIGURE 3. Instabilities in velocity profiles (u). (a )  Free shear layer with inflection point at  P ,  
d2u = 0; (b )  counter-current layer with a zero-velocity point X, (u = 0), and an inflection P ;  (c) 
boundary-layer profile with an inflection P ,  and a zero-shear-stress point Y ,  u = 0 = du. 

(16) gives d2s = d2(As) = 0 everywhere. However this neglects the kinetic energy of 
the How, so consider instead the energy equation, and its differential over the 
layer, 

h + tu2 = h,, (41 1 
thus dh+udu = 0;  

but, dh = Tds+Pdv,  

thus 

Suppose we assume, 'as is often done, that P is constant over the layer, then 

dh+udu = T d s + v d P + u d u  = 0. 

T d s + u d u  = 0, (42) 

so ds-tO, with du, in the limit about some point in the layer. Therefore a small 
neighbourhood of any point can be considered to be in LTE if (P ,  T ,  u) are locally well 
defined. Taking a second differential, 

Td2s+dTds+ud2u+(du)2 = 0, (43) 

where (43) can also be written in terms of d(As) = ds. Now dTds vanishes for a 
constant-temperature layer and so does u d2u a t  a velocity profile inflexion P, or zero 
point X ,  Y ,  figure 3. Then 

1 
T d2(As) = d2s = -- (du)', 

so d2(As) = d2s, vanishes quadratically with du at  these points. Thus the 
thermodynamic theory is consistent with the Rayleigh theory. 

6.  The oblique shock system 
6.1. Solution ambiguities 

Consider now a system containing a single wedge of apex angle 8, in a steady state, 
supersonic stream (figure 4a). If 6, is less than the detachment angle, 6, < Sldet, then 
a straight oblique shock will propagate from its apex. A convenient set of system 

with 

The R H  equations determine two oblique shock solutions (a,, a,) on uwl, one solution 
(the weaker al) usually has supersonic flow downstream of it M ,  > 1, while the other 
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(4 (n 
FIGURE 4. The weaker and stronger shock solutions at a wedge apex and the adjacent shock 
systems. ( a )  Weaker (a1) solution; ( b )  stronger (az) solution; ( e )  polar diagram for the a,,a2 
solutions ; (d )  detached bow shock system ; ( e )  stronger a2 shock at apex with a Guderley boundary 
(second wedge); (f) three-shock system with weaker (al) solution on apex, and with a Guderley 
boundary. a,, 8, apex angle of upstream and downstream wedges respectively; L, distance between 
wedge apexes; L,, critical distance between apexes which supports the a, shock on the apex of the 
upstream wedge; M,,  M,, Mach number respectively upstream and downstream of oblique shock; 
U p s ,  piston (particle) velocity of incident shock i ;  Up,, piston (particle) velocity of upstream free 
stream flow ; Up*, resultant piston (particle) velocity of the flow downstream of the oblique shock; 
W,, wave velocity of the incident shock. 

(the stronger a,) always has subsonic flow downstream (figure 4a-c) .  If we construct 
the vector diagrams for the wave and particle velocities, we find that the particle 
(piston) vector Upi for the oblique shock of both solutions just touches the surface of 
the wedge. l n  both cases also, the resultant of Up(  and the free-stream vector UP1 
coincides with the wedge surface. So both solutions satisfy the boundary condition 
8,. However, experiment shows that i t  is invariably the weaker solution (al) which 
appears (Henderson & Lozzi 1975, 1979). The shock is straight for the aI  solution and 
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the regions upstream and downstream of it are homogeneous. The flow can be 
rcsolvcd into components perpendicular and parallel to the shock and the system can 
then be treated like the normal shock system but with the same velocity component 
parallel to the shock superimposed everywhere. This component has no effect on the 
production of entropy and because the normal shock system is stable so also will be 
this oblique shock system. The system also obeys Bethe’s central theorem (D), which 
means that its entropy production is unique; but now we have a paradox because 
there are two solutions (al ,  a,) defined on uW1. We shall consider the stability of the 
second solution. 

6.2. The stronger solution and set completeness 

Guderley (1962) has discussed the circumstances for which the stronger solution may 
exist. He found that if a second wedge is placed in the flow such that its apex angle 
6, exceeds the detachment angle for M,, 6, > 62det, then the stronger solution would 
appear a t  the apex of the first wedge, provided that the distance L between the two 
apexes had a certain critical value L = L, (figure 4e) .  This implies that the reason for 
the ambiguity is that the set of parameters gWl, although complete for the weaker 
solution is incomplete for the stronger one. A complete set for the latter case is vw2 

(45) gw2 = { e l ,  v l ,  UpI, a,, 6,, L,) 

with 61 < Jldet ; 6 2  > 
The second wedge will cause the downstream region to be non-uniform and the 
entropy will vary from streamline to streamline. Therefore, the flow cannot be 
reduced to that of a normal shock system, nor is Bethe’s theorem ( D )  applicable, but 
we do now have unique solutions on crwl and crwa. 

Guderley’s analysis showed that a detached bow shock appeared when L < L,, and 
that a three-shock system appeared when L > L, (figure 4d ,  f ). In  the latter case, the 
oblique shock on the apex of the first wedge corresponded to the weaker solution. 
Evidently the detached shock system exists for a continuum of values, 0 < L < L,, 
and so does the three-shock system, L, < L < 00, but the stronger oblique shock 
system only exists a t  a single point L = L,. This means that any fluctuations no 
mattcr how small in any of the crwz parameters will cause the stronger solution to 
change discontinuously into one of the adjacent systems ; so a t  most it can exist only 
momentarily at transition between the other two. Furthermore, because i t  can only 
exist a t  the single point L = L,, and because the entropy changes discontinuously 
during transition between the systems, we cannot define ds and d2s a t  the point. 
Thus, the stronger solution is not in equilibrium and it is therefore unsteady and 
unstable, so i t  may be discarded. The existence of the entropy discontinuities at the 
first wedge apex means that there is a singularity or catastrophe associated with the 
structural changes to the shock. 

7. Regular and Mach reflection 
7.1. The von Neumann solutions 

Von Neumann (1943) applied the RH equations to the regular reflection (RR) of a 
plane oblique shock a t  a rigid wall in a perfect gas (figure 5a) .  He imposed the 
boundary condit)ion that the streamline deflection angle 6 of the incident, i ,  and 
reflected, r ,  shock should be equal in magnitude and opposite in sign, 

S1+S, = 0. (46)  
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(4 
FIGURE 5. Regular reflection of a plane oblique shock i a t  a rigid wall in a perfect gas. ( a )  

Weaker (a,) solution, ( b )  polar diagram ; ( c )  stronger (a,) solution with a Guderley boundary. 

The RR theory shows that a convenient set of parameter crr for a given gas is 

Once more the theory defines two solutions (a,,a2) on the set, where the weaker a,  
solution usually has supersonic flow downstream of r , M ,  > 1 ,  and the stronger a2 
solution always has subsonic flow (figure 5a-c). The problem can be reduced to that 
of the single wedge by noting that the region between i and r is uniform and 
approaches the surface a t  the angle 6, which is effectively also the wedge apex angle 
for the plane shock r .  It is immediately concluded that the al solution is the stable 
one and that the a2 solution is unstable even with a Guderley boundary (figure 4 d ) .  
Experiment verifies the conclusion so the a2 solution will be discarded (Henderson & 
Lozzi 1975; Hornung & Robinson 1982). 

Von Neumann applied the same methods to the Mach reflection (MR) of the shock 
i a t  a rigid wall. He replaced the boundary condition (46) a t  the wall with a 
compatibility condition a t  the shock triple point, 

(48) 

where S, is the streamline deflection by the Mach shock. The same set of parameters 
crr now define up to three solutions, designated (PI, pZ, p,) (figure 6). The and p3 
solutions require extra boundaries to be placed upstream of the shock triple point if 
they are to exist, for example, as in figure 6 ( c ) ,  and because these boundaries are not 
present we will discard p2 and p 3 .  Thus on the set cry we are left with an ambiguity 
consisting of the a, solution for RR and the p1 solution for MR, and to resolve i t  we 
must study the boundary conditions in more detail. 

6, + 6, = a,, 
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In P/Pe 

b'2, ' b  > (4 

FIGURE 6. Mach reflection of a plane oblique shock i a t  a rigid wall in a perfect gas. ( a )  p, solution 
with Mach shock b forward of triple point; ( b )  polar diagram for Mach (PI, PZ, P,) and regular 
(a,,a,) shock-system solutions; ( c )  pz solution with second wedge apex upstream of the shock 
triple point. d,, contact discontinuity. 

7.2. The regular-Mach rejlection ambiguity 

7.2.1. The Mach shock forward of the triple point 
Suppose that the values of the c-rr parameters are such that the ,8, solution is in the 

negative4 half-plane of the polar diagram, figure 6 (b). Consequently, 6, < 0, so the 
flow is deflected away from the walls by the shock system, and the Mach shock is 
everywhere forward of the triple point, figure 6(a). Now, the production of entropy 
caused by the Mach shock is always greater than the total produced by the incident 
and reflected shocks near the triple point (this may be inferred from Zel'dovich & 
Raizer 1966, par 16 and especially their figure 1.31 on p. 59) which is a necessary 
condition for an MR to be more stable than an RR. In spite of this many experiments 
show that an RR is present when 6, < 0 (Pantazapol, Bellet & Soustre 1972; 
Henderson & Lozzi 1975, 1979; Hornung & Robinson 1982). This suggests that 8, is 
complete for the RR system but not for the MR one. To investigate this hypothesis 
we begin with a detached bow shock b standing off a wedge of apex angle 6, (figure 
7 a ) .  Next, we place another wedge in the flow upstream of the initial one and such 
that its apex angle 6, < 61det. It generates a plane shock i arranged to intersect the 
bow shock b, figure 7 ( b ) .  The parameters B,, are now 
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(b) 

FIGUKE 7 .  Mach reflection with the Mach shock b forward of the triple point. 

We now have an MR in which the Mach shock is the remnant of the bow shock, and 
i t  is also forward of the triple point. Evidently the MR is generated by three 
boundary disturbances (Up,, S,, a2), whereas the RR requires only two (Upl, d1). 
Henderson & Lozzi (1979) obtained an MR system of this type by replacing the 6, 
wedge with a downstream throat or throttle of variable area. When the throat was 
well open, an R R  was obtained, but when the throttle was sufficiently closed an MR 
with b forward of the triple point was obtained. So this and the other experiments 
cited lend some experimental support to the hypothesis. We conclude that for 
8, < 0, the set crr is complete for regular reflection, but not for Mach reflection: an 
MR requires the rrb set for completeness and without it,  i t  cannot exist. 

7.2.2. The Mach shock backward of the triple point 
Let the values of the crr parameters be changed so that the p1 solution maps into 

the positive 6 half-plane of the polar diagram, figure 8(b ) .  The shock system now 
deflects the flow towards the wall, 6, > 0, and the Mach shock is behind the triple 
point. Many experiments give the remarkable result that it is the MR (PI) solution 
that now appears and not the R R  (a1) one (Molder 1971 ; Pantazapol et al. 1972; 
Henderson & Lozzi 1975, 1979; Hornung & Robinson 1982), so the extra boundary 
in r,,. is no longer needed to produce an MR ! This suggests that it is the impact of 
Aow deflected towards the wall (6, > 0) which makes enough extra disturbance for 
the wall to support the MR with its larger entropy production. If this is correct, then 
i t  should be possible to suppress the MR by relaxing the boundary condition with a 
reflex corner a t  the point where i would intersect the wall ; the reflex angle would 
match 6, (figure 8c) .  Unfortunately, even infinitesimal variations in any of the gr  

parameters would move the shock reflection point from the corner, so the system is 
too strict and thus unstable. But there is another way to test the hypothesis, for 
suppose the wall is a compressible medium of greater shock impedance than the gas ; 
the system could then be regarded as a refraction of the shock i as it passed from the 
gas into the wall material. If we replace the wall by a compliant material such as 
another gas (with a greater impedance than the original gas), then the boundary 
between the two gases will be able to deform during the refraction, a reflex corner will 
be then automatically generated, and it may possibly suppress the MR. Experiments 
have been done with shocks refracting a t  gas interfaces (Jahn 1956; Abdel-Fattah, 
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FIGURE 8. Mach reflection with the Mach shock b behind the triple point. (a) The von 
Xeumann-point transition criterion RRPMR, Mach shock is normal to the flow but of zero 
length; ( b )  Mach reflection, PI solution; (c) suppression of Mach reflection by change of the 
boundary condition, namely the reflex corner of angle n+Sb.  

Henderson & Lozzi 1976; Abdel-Fattah & Henderson 1978a, b) .  Abdel-Fattah & 
Henderson ( 1 9 7 8 ~ )  studied a shock refracting from air into sulphur hexafluoride 
SF,. If one takes the acoustic impedance Z = pa as an approximate measure of the 
shock impedance then Z is about 414 kg m-2 s-l for air and about 853 kg m-'s-l for 
SF,, so the impedance does increase. The polar diagram for the refraction shows that 
the RR (a1) solution for a rigid wall is transferred from the S = 0 axis to the new point 
A,  on the intersection of the SF, and reflected shock polars, and this point determines 
the reflex angle (n+S,), figure 9(a). The shock system is of a type referred to as 
regular refraction ; it has no Mach shock and can be thought of as a generalization of 
regular reflection. 

The cited paper shows that the theory of the system agrees well with experiment. 
We conclude that an MR can be suppressed with the help of a reflex corner, and 
conversely that a rigid flat surface can support an MR when the flow is deflected 
towards the wall 6, > 0. Yet a stable regular reflection also appears to be possible for 
the same set  IT^ ; after all if the RR were to appear then the flow would not be directed 
towards the wall (46) and the extra disturbance would not exist. The rigid flat surface 
therefore appears to be associated with the (cc,,~,) ambiguity. Since the entropy 
production caused by the Mach shock is larger than that by the incident and reflected 
shocks there seems no alternative but to conclude that the ambiguity is resolved by 
the system preferring the higher-entropy-producing solution. 
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FIQURE 9. Regular and irregular refraction of a plane oblique shock wave a t  an air-sulphur 
hexafluoride interface (after Abdel-Fattah & Henderson 1978a). Inverse shock strength Po/Pl = 
5, = 0.143. (a )  Regular refraction wave and polar diagram at the angle of incidence of the incident 
shock i is wo = 45'. ( b )  Irregular refraction wave and polar diagram a t  wg = 56" ; mm, gas interface ; 
t ,  transmitted shock in SF,; i , r ,  incident and reflected shocks in air; n, Mach shock in air; A , ,  
intersection point of the polars for the undisturbed gases, I (air) and I1 (SF,) ; 111, reflected shock 
polar in air. 

7.2.3. Transition between regular and Mach reflection 
The transition point N for RRZMR is on the 6 = 0 axis of the polar diagram, 

figure 8(a) .  At this condition, the Mach shock is of zero length but normal to the flow. 
It is variously called the normal-shock point, the von Neumann point, or the 
mechanical-equilibrium point; the last term arises from the fact that the pressure 
downstream of the reflected shock is continuous through transition. This point only 
exists for incident shocks which von Neumann called 'strong', and our discussion will 
be confined to this case. Strong Mach reflections have supersonic flow downstream of 
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their reflected shocks near transition, while weak MR’s have subsonic flow 
downstream. The transition point is a singularity or catastrophe on the shocks i and 
r at their point of reflection where the structure of the shock system changes. A 
contact discontinuity develops from it as MR appears. We find that the entropy of 
the flow behind the Mach shock b is larger than that behind the Mach shock r 
(Zel’dovich & Raizer 1966), so the contact discontinuity is also an entropy 
discontinuity. The free-stream temperature of the substance and its velocity are also 
discontinuous across it. We see, therefore, that transition to MR involves the sudden 
appearance of an entropy, temperature and velocity discontinuity in the flow ; the 
system is thus thermodynamically unstable at transition since it is impossible to 
define ds, or d2s in every direction from the transition reflection point. 

Because, for strong MR, the flow downstream is supersonic, M ,  > 1,  the reflected 
shock r is straight and the flow downstream of r is homogeneous and in LTE. On the 
other hand, the flow downstream of the Mach shock b is subsonic and inhomogeneous, 
but it may be considered to be in stable LTE if C, and (aP/av), can be defined at each 
point. At the contact discontinuity d, which forms the boundary between these two 
regions, the flow is not in equilibrium because of viscous momentum exchange and 
thermal conductivity, so ds =k 0, and the flow is locally unstable. Since it is a free 
shear layer it would be expected that Kelvin-Helmholtz instability would develop 
along it as well. However, behind the r shock all of these disturbances are swept 
downstream a t  supersonic speed, and even behind the Mach shock experiment 
suggests that they have little effect on the stability of the flow. It is concluded that 
the regions downstream of the reflected and Mach shocks are separately stable but 
that a local instability exists a t  the boundary between them. But the instability 
develops so slowly that its effect on the neighbourhood of the triple point is 
negligible. So the flow downstream of strong Mach reflection can be regarded as being 
a t  least meta-stable. 

A Mach reflection can also appear in an irregular shock refraction, figure 9(b) .  
Transition between the regular and irregular refraction occurs a t  the point A ,  which 
is the intersection of the primary polars for the two gases, figure 9(a ,  b). The point 
A , ,  or a point very close to it is supported by experiment in the cited references, and 
it may be regarded as a generalization of the von Neumann point N .  The onset of MR 
in refraction is again a thermodynamic instability. 

8. Conclusions 
The systems considered here are in steady-state, adiabatic flow but not necessarily 

in thermodynamic equilibrium, for instance it may be impossible to choose a 
coordinate system that is simultaneously at rest with respect to every part of the 
system. However the systems are considered to be in piecewise local thermodynamic 
equilibrium (LTE). For these systems we conclude that : 

(a) By the second law, a necessary condition that a system is in piecewise LTE is 
that the entropy of any region of the medium should have a stationary value, 

ds = 0, (50) 

under the constraint that the internal energy e is constant and that the region is 
compatible with the system boundaries. This implies that ( P ,  T ,  u )  are constant for 
the region. 

( b )  By the second law, a necessary condition that a region in LTE is stable is that 
its entropy is a maximum, 

d2s < 0, (51) 
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which implies both that c, > 0, 

and consequently (equations (20 and (21)), ( 2 2 ) ,  that 

(F) < o .  
e 

Equations (20) and (21) may be extended to (25) and (26). According to the second 
law these conditions are generally valid for stability both for the systems considered 
here and also those in strict equilibrium. 

Bethe’s condition (6) follows from (22) when the medium is a polytropic substance. 
He required (6), as a sufficient condition to prevent the shock becoming unstable by 
splitting (a structural change, or catastrophe) ; however (6) is a consequence of the 
more general conditions (20) and (21). 

(c) Not only must the systems satisfy the Claiisius inequality/equality for 
irreversibility/reversibility for their existence, 

As 2 0, (52) 

(53) 

d2(As) < 0, (54) 

but, by the second law, As must also be a maximum if the system is to be stable, that  
is 

d(As) = 0, 

subject t,o the constraints that the total enthalpy h, of the system is everywhere 
constant and that the system is compatible with its boundaries. This is the principle 
of maximum entropy production ( E )  in the text. The entropy production is per unit 
mass not per unit time so it is not necessarily in conflict with Prigogine’s minimum- 
entropy-production principle. 

( d )  The Bethe conditions (2 )  and (5) are consequences of As > 0, ATJ < 0, and the 
Hugoniot equation. They were formulated only for the special case of compressive 
normal shock systems, and they are not generally required for stability, as (20) and 
(21) are. 

( e )  Violation of the principle of maximum entropy production means the loss of 
the necessary conditions for the existence and, or, stability of the system. Among the 
possible violations are the following : 

(i) ds =+ 0 and, or d(As) =i= 0, the system is not then in piecewise LTE so that any, or 
all, of (P,  T, u)  may change in time; the system is then unstable because i t  is 
unsteady. An example is the non-stationary normal-shock system discussed in the 
text. 

(ii) d2s = 0 and, or d2(As) = 0, so the entropy, or entropy production may not be 
a maximum. This may occur for example a t  an inflection point in the velocity 
distribution of a free shear layer or boundary layer, or a t  a point of zero shear stress 
in a wake, or on a surface in contact with a separating boundary layer. 

(iii) Any, or all, of s, ds, d2s, d(As), or d2(As) are discontinuous a t  a point, so that 
s or its differentials cannot be defined in all directions from the point. This may lead 
for example t o  the sudden appearance of a contact discontinuity (free shear layer) as 
in Mach reflection. Such a layer is associated with an entropy, temperature, and 
velocity discontinuity across it and therefore i t  is both thermally and dynamically 
(Kelvin-Helmholtz) unstable. 



Thermodynamic stubility of steudy-state adiabatic systems 529 

(iv) A8 < 0, this is not a violation but an impossibility for adiabatic systems. It is 
required for example for the existence of expansion shocks in media satisfying (i) and 
(ii). So they cannot exist in these circumstances. 
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